
A Massively Parallel and Scalable Multi-GPU Material Point Method

XINLEI WANG∗, Zhejiang University and University of Pennsylvania
YUXING QIU∗, University of California, Los Angeles and University of Pennsylvania
STUART R. SLATTERY, Oak Ridge National Laboratory
YU FANG, University of Pennsylvania
MINCHEN LI, University of Pennsylvania
SONG-CHUN ZHU, University of California, Los Angeles
YIXIN ZHU, University of California, Los Angeles
MIN TANG, Zhejiang University
DINESH MANOCHA, University of Maryland
CHENFANFU JIANG, University of Pennsylvania

Fig. 1. Crushing concrete. Our system enables this concrete crushing simulation (inspired by the hydraulic press) on a single workstation with 4 NVIDIA
Quadro P6000 GPUs. This simulation contains 93.8 million particles on a 10243 grid, achieving a 3.9 min/frame performance. (Left) A concrete-style render.
(Middle) Coloring by GPU. (Right) Coloring by the plastic volumetric strain for visualizing the damage propagation.

Harnessing the power of modern multi-GPU architectures, we present a mas-
sively parallel simulation system based on the Material Point Method (MPM)
for simulating physical behaviors of materials undergoing complex topolog-
ical changes, self-collision, and large deformations. Our system makes three
∗equal contributions

Authors’ addresses: Xinlei Wang, Zhejiang University and University of Pennsylvania;
Yuxing Qiu, University of California, Los Angeles and University of Pennsylvania;
Stuart R. Slattery, Oak Ridge National Laboratory; Yu Fang, University of Pennsylvania;
Minchen Li, University of Pennsylvania; Song-Chun Zhu, University of California,
Los Angeles; Yixin Zhu, University of California, Los Angeles; Min Tang, Zhejiang
University; Dinesh Manocha, University of Maryland; Chenfanfu Jiang, University of
Pennsylvania.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/7-ART30 $15.00
https://doi.org/10.1145/3386569.3392442

critical contributions. First, we introduce a new particle data structure that
promotes coalesced memory access patterns on the GPU and eliminates the
need for complex atomic operations on the memory hierarchy when writ-
ing particle data to the grid. Second, we propose a kernel fusion approach
using a new Grid-to-Particles-to-Grid (G2P2G) scheme, which efficiently
reduces GPU kernel launches, improves latency, and significantly reduces
the amount of global memory needed to store particle data. Finally, we intro-
duce optimized algorithmic designs that allow for efficient sparse grids in a
shared memory context, enabling us to best utilize modern multi-GPU com-
putational platforms for hybrid Lagrangian-Eulerian computational patterns.
We demonstrate the effectiveness of our method with extensive benchmarks,
evaluations, and dynamic simulations with elastoplasticity, granular media,
and fluid dynamics. In comparisons against an open-source and heavily
optimized CPU-based MPM codebase [Fang et al. 2019] on an elastic sphere
colliding scene with particle counts ranging from 5 to 40 million, our GPU
MPM achieves over 100× per-time-step speedup on a workstation with an
Intel 8086K CPU and a single Quadro P6000 GPU, exposing exciting possibil-
ities for future MPM simulations in computer graphics and computational
science. Moreover, compared to the state-of-the-art GPU MPM method [Hu

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392442

30:2 • Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang

et al. 2019a], we not only achieve 2× acceleration on a single GPU but our
kernel fusion strategy and Array-of-Structs-of-Array (AoSoA) data structure
design also generalizes to multi-GPU systems. Our multi-GPU MPM exhibits
near-perfect weak and strong scaling with 4 GPUs, enabling performant and
large-scale simulations on a 10243 grid with close to 100 million particles
with less than 4 minutes per frame on a single 4-GPU workstation and 134
million particles with less than 1 minute per frame on an 8-GPU workstation.

CCSConcepts: •Computingmethodologies→Parallel algorithms.

Additional Key Words and Phrases: Numerical methods, parallel com-
puting, GPU
ACM Reference Format:
Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun
Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang. 2020. A
Massively Parallel and Scalable Multi-GPU Material Point Method. ACM
Trans. Graph. 39, 4, Article 30 (July 2020), 15 pages. https://doi.org/10.1145/
3386569.3392442

1 INTRODUCTION
The Material Point Method (MPM) provides significant potential
and opportunities to exploit parallelism on modern computing ar-
chitectures. To date, most work on MPM performance has focused
on how to thread the algorithm on conventional CPUs and, to a
lesser extent, has attempted to exploit domain decomposition via
the Message Passing Interface (MPI). This line of work includes
threading particle and grid operations as well as handling the trans-
fer of data between particles and grids, which often results in a
bottleneck when parallelized. With the advent of modern accelera-
tor architectures such as GPUs, enough memory and bandwidth are
available on the accelerator to perform MPM simulations with the
significant number of particles and grid cells needed for generating
expansive and high-resolution visual scenes. These new accelerator
performance capabilities, including advances in native support for
scalable atomic operations on floating-point numbers, results in the
ability to perform a relatively large number of computations in a
relatively small amount of computing time on a single GPU.

However, the memory and compute power of a single GPU is not
limitless. To the best of our knowledge, no prior work has attempted
to develop a performant algorithm forMPM that utilizes multi-GPUs
in a shared memory context. Given numerous multi-GPU platforms
being deployed by vendors both in server and workstation config-
urations, algorithm development for multi-GPUs will enable us to
perform even larger-scale simulations at a significantly reduced
computing time on what could be considered commodity hardware.
Re-designing MPM algorithms for multi-GPUs is non-trivial. First,
as a hybrid simulation method, MPM involves complex operations
on particles, grids, and the transfer of data between them. Compared
to developing a scalable single GPU algorithm, algorithms utilizing
multi-GPUs require inter-GPU communications to program the ma-
jority of these operations. Second, MPM simulations usually target
scenarios with explosions, fractures, highly deformable solids, and
fluids. For such highly dynamic problems, the particle population
will fluctuate in time as a function of space and therefore incur load
imbalance when multiple devices are used.
To further increase the computational power available to per-

form MPM simulations in both single- and multi-GPU execution
contexts, we make three novel contributions. First, we reformulate

the conventional GPU-based MPM pipeline with a fused G2P2G
kernel function, which not only enables both single- and multi-GPU
performance gains, but is also generalizable to prior MPM designs
[Fang et al. 2019; Wolper et al. 2019]. Secondly, we develop a spe-
cialized Array-of-Structs-of-Array (AoSoA) particle data structure
tailored for our G2P2G kernel utilizing the delayed-ordering tech-
nique that maximizes bandwidth efficiency. Finally, we propose a
domain-decomposition-invariant computation scheme tailored for
multi-GPUs, which significantly reduces the additional memory
overhead due to PCIe connections among GPUs. As a result, our
method outperforms the heavily optimized state-of-the-art single-
GPU MPM implementation [Gao et al. 2018b; Hu et al. 2019a] with
a 2× speedup and achieves almost linear scaling on multi-GPUs.
Moreover, we accomplished large-scale MPM simulations with truly
enormous particle and grid cell counts.
We organize this paper as follows. We review related work in

Section 2, serving as the basis for our comparisons to the state-of-the-
art. In Section 3, we introduce our improved single-GPU algorithm
and outline the kernel fusion procedure and data structure details.
In Section 4, we present the new multi-GPU algorithm and include
a discussion of memory management and communication, while
details on the implementation of our code are provided in Section 5.
In Section 6, we present results on an extensive selection of bench-
marks using a variety of materials. We also include an analysis of
both strong and weak scaling of our algorithm as a function of the
number of GPUs, which shows significant performance improve-
ments over the state-of-the-art in GPU implementations as well as
significant performance gains when using the GPU algorithm rela-
tive to a highly optimized CPU implementation. Finally, in Section 7,
we conclude the paper with a discussion of the limitations of our
new algorithm and the resulting avenues for future work.

2 RELATED WORK

2.1 HPC-based Simulations in Computer Graphics
Parallelized Solvers. The rapid development of modern CPU and

GPU architectures makes it possible to accelerate physics-based sim-
ulation by parallelizing existing algorithms using threads, domain
decomposition, or some combination thereof. A basic approach to
parallelism executes an algorithm using multiple threads on mul-
tiple CPU cores on a single node, supported by shared memory
programming models such as Intel TBB [Willhalm and Popovici
2008] and OpenMP [Dagum and Menon 1998]. Recent examples in-
clude Li et al. [2019], which performs domain decomposition within
an optimization time integrator for CPU-based parallel evaluation
and factorization of subdomain Hessians.

To achieve even better performance, researchers have developed
parallel simulation algorithms for the GPU, which enables more
floating-point operations on a per-Watt and per-dollar basis when
compared to traditional multi-core CPU architectures. In literature,
parallelization of large-scale simulations in fluid dynamics, such as
Eulerian fluids [Chentanez and Müller 2011, 2013; Cohen et al. 2010;
Pfaff et al. 2010], Lagrangian fluids [Amada et al. 2004; Goswami
et al. 2010; Macklin et al. 2014; Vantzos et al. 2018; Winchenbach
et al. 2016], and the hybrid Eulerian-Lagrangian solvers [Chentanez
et al. 2015; Wu et al. 2018], have all been implemented on a single
GPU. For GPU simulations of solid mechanics, Gao et al. [2018b] and

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392442
https://doi.org/10.1145/3386569.3392442

A Massively Parallel and Scalable Multi-GPU Material Point Method • 30:3

Fig. 2. Bomb falling. We run the bomb falling test on 8 GPUs with 134M particles (6,688 bombs with nonlinear finite-strain hyperelastic constitutive models)
and grid resolution 512 × 2048 × 512. On average, each frame is finished within 1 minute, indicating the scalability of our proposed multi-GPU MPM pipeline.

Hu et al. [2019a] implement the high-performance Moving Least
Squares MPM [Hu et al. 2018], and Bernstein et al. [2016] and Hu
et al. [2019a] explore Finite Element Method (FEM) parallel methods.

Due to the ever-increasing demand for computational resources
and new hardware releases by vendors, developing multi-GPU solu-
tions is an inevitable trend for physics-based simulations to utilize
modern computing hardware effectively. Recent work, such as multi-
GPU-based Smoothed Particle Hydrodynamics (SPH) [Domínguez
et al. 2013; Rustico et al. 2012; Verma et al. 2017; Xiong et al. 2013],
FEM [Li et al. 2020], and parallelized Poisson equation solvers
[Ament et al. 2010; Liu et al. 2016], has demonstrated the plausibility
of physics-based simulation on multi-GPU platforms.
Another stream of high-performance physics-based simulation

utilizes distributed platforms, i.e., cloud-based simulation. Early
work commonly makes use of MPI to assign computing tasks to
distributed nodes automatically. To better adapt to large topological
changes that can occur during a simulation, methods for fluid load
balancing in cloud-based simulations are proposed [Mashayekhi
et al. 2018; Shah et al. 2018], showing significant potential to achieve
high-performance distributed fluid animations.

Efficient Data Structures. From the Eulerian viewpoint, the MPM
simulation domain is represented by a discretized structured grid
where the volumetric data involved is often spatially sparse in large-
scale 3D simulations due to dynamic particle populations. This fact
has inspired extensive studies on hierarchical and sparse data struc-
tures [Hoetzlein 2016; Liu et al. 2018; Museth 2013; Setaluri et al.
2014] to create efficient data access patterns that mitigate the effects
of sparsity. For instance, OpenVDB [Museth 2013], one of the most
popular sparse storage schemes in computer graphics, dynamically
arranges blocks of a grid in a hierarchical manner similar to B+ tree.
Hoetzlein [2016] extends this idea further on GPU and proposes
GVDB Voxels with an efficient memory pooling architecture to sup-
port dynamic topology changes. Alternatively, SPGrid [Gao et al.
2018b; Setaluri et al. 2014] has proven to be a promising data struc-
ture in both MPM [Aanjaneya et al. 2017; Hu et al. 2018] and other
fluid simulations [Aanjaneya et al. 2017; Liu et al. 2016; Setaluri
et al. 2014]. Additionally, methods such as spatial-temporal coher-
ent spatial hashing are also explored to take advantage of the spatial
sparsity [Tang et al. 2016; Wang 2018; Weller et al. 2017]. Recently,
Hu et al. [2019a] introduces the Taichi programming model, which

exposes high-level interfaces for developing and processing spa-
tially sparse multi-level data structures and benefits researchers by
eliminating redundant work in data and performance management.

On the other hand, from the Lagrangian viewpoint, particle infor-
mation is generally unstructured and stored in anArray-of-Structure
(AoS) [Hu et al. 2019a] or Structure-of-Array (SoA) [Gao et al. 2018b]
compact layout. SoA promotes coalescedmemory accesses of particle
data when sequential threads access sequential memory addresses.
However, the particles need to be re-sorted after each time step to
maintain such an efficient data access pattern [Gao et al. 2018b].
SoA is less efficient in gather/scatter operations such as serialization,
where long strides in memory are needed to access all data for a
single particle, resulting in the use of multiple memory pages. In
contrast, AoS maps more readily to the concept of a particle and
performs well in cases of un-coalesced memory access patterns
due to the locality of the data for a single particle. However, such
a memory layout prevents coalesced reads and writes of particle
data, thereby significantly inhibiting both GPU and vectorized CPU
performance when coalescing is possible. To exploit both the advan-
tages mentioned above and mitigate the disadvantages, we propose
an MPM-centric Array-of-Structs-of-Array (AoSoA) data structure
for better performance, which possesses the qualities of both SoA
and AoS. Inspired by the Hierarchical Particle Buckets introduced
by Hu et al. [2019a] and Bailey et al. [2013], we store particles’
data in a hierarchical manner with AoSoA. The particles are reor-
ganized in low-level bins and high-level block-buckets to conserve
the efficiency of both the memory access and the data transfer.

2.2 The Material Point Method in Computer Graphics
Introduced by Sulsky et al. [1994, 1995], MPM is an extension of
Hybrid-Fluid-Implicit-Particle (FLIP) [Brackbill and Ruppel 1986;
Zhu and Bridson 2005] from fluid animation in hydrodynamics to
general elastoviscoplastic materials simulation in solid mechanics.
As one of the most promising discretization choices in physics-based
simulation, MPM has been used for simulating numerous materials
and diverse phenomena. Prior work includes snow [Gaume et al.
2018; Stomakhin et al. 2013], granular materials [Daviet and Bertails-
Descoubes 2016; Gao et al. 2018b; Klár et al. 2016; Zhao et al. 2019],
viscoelastic solids [Fang et al. 2019], cloth [Fei et al. 2018; Guo et al.
2018; Jiang et al. 2017; Montazeri et al. 2019], hair [Fei et al. 2018; Guo
et al. 2018; Jiang et al. 2017], and non-Newtonian fluids and foam

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

30:4 • Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang

[Nagasawa et al. 2019; Ram et al. 2015; Yue et al. 2015, 2018]. Addi-
tionally, other complex phenomena have been simulated with MPM
including melting [Gao et al. 2018b; Stomakhin et al. 2014], baking
[Ding et al. 2019], topological changes and fracture [Wang et al.
2019; Wolper et al. 2019; Wretborn et al. 2017], multiple-material
interaction [Gao et al. 2018a; Han et al. 2019; Hu et al. 2018; Tam-
pubolon et al. 2017; Yan et al. 2018], frictional contact and collision
[Ding and Craig 2019], etc. Recently, GPU-based acceleration [Gao
et al. 2018b; Hu et al. 2019a], as well as spatially [Gao et al. 2017; Yue
et al. 2018] and temporally [Fang et al. 2018] adaptive methods have
been proposed to improve the computational efficiency of MPM.
Prior work on GPU MPM has focused on the design of GPU-

tailored data structures for both particles and grids, as well as the
corresponding mathematical operations to achieve better perfor-
mance; each sub-step is redesigned for GPU (largely using CUDA
up to this point). For instance, both Gao et al. [2018b] and Hu et al.
[2019a] reduce write conflicts during the Particles-to-Grid (P2G)
transfer, either by CUDA warp-level reductions [Gao et al. 2018b] or
the random-shuffling of particles inside each block [Hu et al. 2019a].
As reported in these papers, using GPUs can considerably improve
performance compared to traditional CPU-based MPM.

2.3 Data Structures and Simulations in HPC
AoSoA. Particle data structures are largely responsible for CPU

and GPU performance as they dictate memory access patterns when
parallelizing codes via threading or vectorization. The most com-
monly adoptedmemory layouts in HPC are SoA andAoS. Specifically,
in terms of particle data layouts, SoA stores all particle data com-
ponents (e.g., mass, each velocity direction, etc.) in separate arrays,
ensuring coalesced memory access when reading/writing the same
component of adjacent particles. However, when performing non-
coalesced operations like particle-grid transfers, additional sorting
methods are required to maintain particle order to guarantee that
consecutive thread indices access consecutive particle indices [Gao
et al. 2018b]. In contrast, AoS reduces the need for sorting in non-
coalesced operations, since its improved memory locality has better
performance when randomly accessed. However, the same data com-
ponents of adjacent particles are no longer adjacent in memory [Hu
et al. 2019a], resulting in a non-coalesced data access pattern even
when coalescing would otherwise be possible. To take advantage of
both the AoS and SoA layouts, researchers have proposed AoSoA to
achieve both coalescing/vectorizing data access patterns whenever
possible and to improve performance via memory locality when it
is not [Wald 2010; Weber and Goesele 2014]. Section 3.2 discusses
the implementation of AoSoA in greater detail.

HPC Simulation Frameworks. For scientific simulations in HPC,
accelerators are already being adopted broadly with a number of the
current top supercomputers leveraging GPU hardware to achieve
the majority of their performance [TOP500.org 2019]. In these types
of supercomputing configurations, thousands of accelerators are
combined with a high-speed interconnect with the goal of reaching
exascale-class levels of floating-point operations in the next few
years. To achieve portability across the variety of accelerator archi-
tectures in use in modern supercomputers, several programming
models, libraries, and frameworks have been developed to allow for

the manipulation of data structures (e.g., AoS vs. SoA) and paral-
lel loop patterns based on the underlying hardware. Examples of
performance portability programming models include Kokkos [E.
et al. 2014] and its derivative libraries Cabana [Slattery et al. 2019],
a portable library for writing multi-GPU particle simulations via the
AoSoA data structure as well as multi-GPU grid-based simulations
which can be used to implement hybrid particle-in-cell algorithms
such as MPM. Other examples include SMILEI [Derouillat et al.
2018], an open-source multi-purpose Particle-In-Cell (PIC) imple-
mentation that has been applied to a wide range of physics studies,
from astrophysical plasma to relativistic laser-plasma interaction.
An analysis of the accelerated machines on the TOP500 list, as

mentioned above, and a review of the computational patterns in
libraries (such as Kokkos and Cabana) reveal that multi-GPU pro-
gramming on such machines is relegated mainly to a single GPU per
MPI rank. Such a programming model allows for a more straightfor-
ward description of parallelism and more accessible programming.
However, in the case of many simulation algorithms such as MPM,
it forces the application more quickly into the strong scaling limit
by further subdividing the problem into smaller pieces. By develop-
ing a multi-GPU shared memory programming model in this work,
we aim to gain additional performance on modern supercomputers
by reducing the number of subdomains needed for parallelization,
thus increasing the number of GPUs per MPI rank and reducing the
dependence on the performance of the network, including its band-
width and latency. The multi-GPU advancements in this work are
particularly important for machines such as Summit [Facility 2018]
as a subset of the GPUs on each compute node has a significantly
faster local interconnect than the PCI connection and therefore
would strongly benefit from the MPI-free algorithm presented here.

3 IMPROVED SINGLE-GPU ALGORITHM
Before introducing our algorithmic improvements, we first sum-
marize the essential steps of a conventional first-order MPM time
integration scheme for incremental dynamics from tn to tn+1 (∆t =
tn+1 − tn).

(1) Particles-to-Grid (P2G). Transfer mass and momentum from
particles to grid nodes: {mp ,mpv

n
p } → {mi ,miv

n
i };

(2) Grid Update. Update grid velocities with either explicit or im-
plicit time integration:vn

i → vn+1
i ;

(3) Grid-to-Particles (G2P) and Particle Advection. Transfer
velocities from grid nodes to particles, evolve particle strains, and
project particle deformation gradients for plasticity (if any). Up-
date the particle positions with their new velocities: {vn+1

i } →

{vn+1
p , Fn+1p }, {pnp ,vn+1

p } → {pn+1p };
(4) Partition Update. Maintain the sparse data structure topology

by updating the active-block array and the mapping from block
coordinates to array indices.

Typically, each particle has several attributes including massmp ,
position xp , velocity vp , deformation gradient Fp , initial volume
V 0
p , and the affine matrix Cp , which is the same as the velocity
derivative matrix in MLS-MPM [Hu et al. 2018]. On the grid, each
node generally stores the grid massmi and the momentummivi ,
from which the nodal velocity vi can be calculated.

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

A Massively Parallel and Scalable Multi-GPU Material Point Method • 30:5

Fig. 3. Candy bowl. We show how to gather a bowl of candies by pouring 6786 candies from a tube. This simulation runs on 4 GPUs with 23M particles
and grid resolution 1024 × 1024 × 512. Each frame is simulated with approximately 4 seconds, demonstrating the acceleration achieved by our algorithm to
simulate and generate large-scale scenes that cannot be efficiently processed using traditional MPM on smaller computing systems.

For the grid data structure, we use the GPU-SPGrid [Gao et al.
2018b], a variant of the CPU-based SPGrid [Setaluri et al. 2014].
Although both GPU- and CPU-based SPGrid use SoA layout for
blocks, their underlying arrangements of blocks are fundamentally
different. CPU-based SPGrid [Setaluri et al. 2014] leverages the
extensive hardware acceleration mechanisms inherent in the virtual
memory system for performant sequential and stencil operations on
grid data. The GPU-based SPGrid [Gao et al. 2018b], on the contrary,
explicitly manages grid blocks with spatial hashing, which maps
spatial block coordinates to block indices in an array. Both structures
can maintain the sparsity of the grid and minimize the memory
footprint. In this work, we use the quadratic B-spline weighting
kernel for both mass and velocity transfers between particles and
grids, and therefore each particle is associated with 3 × 3 × 3 grid
nodes in 3D (3 × 3 in 2D). However, our algorithm works for all
typical interpolating kernels that use compact stencils.
When parallelizing MPM algorithms, the general concern about

the performance is the transfer operations between particles and
grids, i.e., P2G and G2P. These sub-steps become even more crucial
to the performance of implicit schemes where significantly more
transfer operations are required. Below, we present two techniques
to accelerate the transfer operations: 1) Grid-to-Particles-to-Grid
(G2P2G), an innovative and fused algorithmic kernel, and 2) Array-
of-Structs-of-Array (AoSoA), a new application of a particle data
structure with an associated parallel loop strategy.

3.1 G2P2G
Similar to many PIC/FLIP-based solvers, the MPM method uses
particles to represent discrete Lagrangian elements of the simu-
lated continuum material and employs the Eulerian background
grid as the auxiliary scratchpad to compute spatial derivatives and
apply boundary conditions. Within a conventional MPM formula-
tion, the particle states are the primarily evolved quantities. When
parallelizing the MPM algorithm, the computations in all the sub-
steps (i.e., P2G, grid update, G2P, particle advection, and partition
update) are implemented in separate GPU kernels. Prior methods
adopt GPU-tailored data structures for particles and grids and re-
duce write-conflicts during P2G, either through CUDA warp-level
reductions [Gao et al. 2018b] or by randomly shuffling particles
inside each block [Hu et al. 2019a]. Although each kernel is highly
optimized, the synchronization of the grid state required by the grid

update incurs the separation of kernels, hindering the GPU MPM
performance. This limit calls for additional treatments.
To further reduce the latency on modern GPU architectures, re-

ordering the traditional time-stepping strategy and combining sev-
eral kernels are necessary. In each traditional MPM time step, par-
ticle quantities have to be streamed in and out of the GPU global
memory for multiple times, i.e., in P2G and G2P. Unlike the GPU
MPM kernels implemented in Gao et al. [2018b] where Fp is updated
at the end of the G2P kernel, Hu et al. [2019a] reorders pipeline by
moving the update of Fp to the beginning of the P2G kernel before
the P2G transfer to reduce the redundant particle data accesses.
With this modification, the evolved Fp can be reused immediately
inside the P2G kernel, thus removing the operations to write and
reload the updated Fp to and from the GPU global memory in both
the current G2P kernel and the next P2G kernel. Using a similar
strategy, we could further reorder the traditional MPM time step
and reformulate a new kernel for better efficiency.
We start by analyzing the data dependencies among adjacent

MPM sub-steps. As shown in the left column of Fig. 4, we observe
some order constraints on data dependencies and execution orders
of the sub-steps: 1) The P2G must be finished before the grid update,
and theG2P is performed after all the grid states been evolved. 2) The
partition update, wherein the particle-grid mapping and the sparse
grid data structure are maintained, depends only on the results of
G2P, i.e., the advected particle positions. 3) The P2G transfer relies
on the particle-grid mapping, i.e., particles need to know to which
grid nodes they should rasterize to, which leads to the dependency
between the partition update in the current time step k and the
P2G in the next time step k + 1. The first two observations exhibit
strict data dependencies, which are unchangeable to ensure correct
computations. The third one, however, is a weak dependency, since
the particle-grid mapping can be staggered differently. Therefore,
we can reformulate the execution order of the sub-steps for better
performance should the strict data dependencies were preserved.
Following the above analysis, we devise a novel G2P2G kernel

by grouping the G2P in time step k and the P2G in time step k + 1
together; see Fig. 4 for a graphical illustration. Specifically, during
the G2P, transferring the velocity vp and any other higher-order
velocity modes of the particles can be interpolated from grids to
update particle positions and deformation gradients. When group-
ing the G2P and the P2G together, these interpolated attributes can
be referenced immediately for both the particle updates and the

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

30:6 • Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang

Dependency
P2G

update grid

G2P

update partition P2G

...

update grid

3

4 5

6

1

2

P2G

update grid

G2P

update partition P2G

...

update grid

3

4 5

6

1

2

Execution

P2G

update grid

G2P

update partition

P2G

update grid

G2P

update partition

update partition

update grid

G2P

P2G

G2P2G

update partition

update grid

G2P

P2G

G2P2G

Execution with G2P2G

Fig. 4. MPM pipeline reformulation. The left column shows the tradi-
tional MPM pipeline, and the middle one illustrates an analysis of data
dependencies among the sub-steps. The exchange of the update partition at
the current time step k and the P2G at the next time step k + 1 would not
break the data dependency or the execution correctness, making it possible
to reorder and assemble theG2P and the P2G to form amore efficientG2P2G
kernel, as shown on the right.

next momentum transfer from particles to grids, converting these
quantities to temporary variables within the kernel instead of ar-
rays allocated in GPU global memory; the only particle attributes
that need to be preserved are the mass, positions, and deformation
gradients. With such a G2P2G reformulation, the newMPM pipeline
inverts the traditional MPM time step by regarding the grid states
as the primarily evolved quantities in each time step, with particles
treated as intermediate integration points instead. At a high level,
this G2P2G reformulation not only eliminates two transfer kernel
launches and two particle data accesses for each time step, which
significantly improves the performance but also reduces the particle
storage. Note that, in addition to refactoring an explicit time step as
presented in this work, the G2P2G approach could also be applied
to implicit MPM schemes where the transfer process can take up to
90% of the wall time of a given simulation.

As for the particle-grid mapping strategy, traditional GPU MPM
solvers [Gao et al. 2018b; Hu et al. 2019a] employs an off-by-one
particle-grid mapping, wherein each particle block only touches 2×
2× 2 grid blocks in both the P2G and the G2P transfer kernels. After
the particle advection, the particles may move out of their original
particle blocks, and the next P2G could then write to a different set of
2×2×2 grid blocks. Although the partition update kernel may remap
the particles to grids to ensure the P2G still loads only 2× 2× 2 grid
blocks in the next time step, the partition update and the P2G only
possess a weak dependency; i.e., the correctness of the calculation
would still be guaranteed if the next P2G is executed immediately
after the G2P without updating the partition. What does change
is that the data accessed in the P2G kernel may need to involve
more grid blocks. To eliminate the influence of particle advection on

o�-by-1 o�-by-2

Particle

Cell in Block 0

Cell in Block 1

Cell in Block 2

Cell in Block 3

Particle Block

Advection Zone

In�uence Domain

Fig. 5. Different staggered mappings. Each square represents a cell in
space, marked with a color that indicates the block it is located in. During
the transfer, particles represented by circles contribute properties to the
background grid. (Left) The conventional GPU MPM pipeline adopts an off-
by-one staggered mapping between blocks and particles for more efficient
use of the shared memory. (Right) The G2P2G pipeline adopts an off-by-two
strategy: particles from a block should be located at least two-cell distance
from the border of the arena. Such a design ensures the particles to stay in
the same blocks after CFL-bounded advection in the G2P2G.

the grid blocks accessed by the G2P and the following P2G kernel,
we design an off-by-two mapping strategy, making it possible to
reorganize the time step without sacrificing the performance during
the P2G transfer. Below, we present the technical details needed to
adopt this new G2P2G pipeline.

Particle-Grid Offset. In general, the “scratchpad” pattern is critical
to the performance of transfer operations; it refers to a software-
managed local data buffer stored in shared memory in the context
of GPU computing. For the P2G kernel, this buffer stores the grid at-
tributes, i.e., mass, and momentum, to which particles will rasterize.
For the G2P kernel, on the other hand, it stores the attributes of grid
nodes from which the particle states would be interpolated. Instead
of using a direct mapping between particles and blocks, traditional
GPU MPMs use an off-by-one staggering strategy [Gao et al. 2018b;
Hu et al. 2019a]. In detail, a staggered mapping between particles
and grid blocks with a one-cell-distance is applied to the P2G and
the P2G kernel. In this way, each transfer kernel requires a small
shared memory buffer with only 2 × 2 × 2 grid blocks loaded, as
shown in the left-side of Fig. 5. Without such a staggering, 3 × 3 × 3
grid blocks (3 × 3 in 2D) will be needed, increasing the cost of both
memory storage and the data accessing.
However, in the G2P2G, the off-by-one staggered mapping be-

tween particles and grid nodes cannot be used as it is impossible to
keep the assumption that particles would only touch 2 × 2 × 2 grid
blocks during transfers, since we now advect the particles during
the G2P2G kernel execution. We solve this problem with an off-by-
two staggered mapping, tailored for our G2P2G pipeline. Overall,
the local buffer size remains the same as in prior off-by-one stag-
gered mapping [Gao et al. 2018b; Hu et al. 2019a], i.e., 2 × 2 × 2 grid
blocks, with each block containing 4 × 4 × 4 grid nodes. In detail,
bounded by a Courant–Friedrichs–Lewy (CFL) condition, particles
would never move more than one-cell distance during the particle
advection. Therefore, the grid cells that particles may write to during
the P2G transfer would not extend by more than one cell in each
3D direction. When enforcing the particle-grid mapping with the
off-by-two strategy, the touched grid blocks would not change for
the P2G after the previous G2P and the particle advection. There-
fore, the G2P2G pipeline reformulation does not increase the shared

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

A Massively Parallel and Scalable Multi-GPU Material Point Method • 30:7

Fig. 6. Soil falling.We show a soil falling test with Non-Associated Cam-Clay (NACC) running on 4 GPUs with 53M particles and grid resolution 512×512×512.
We illustrate the Multi-GPU Static Partitioning by Particles (MGSP) on the right-top corner of each subfigure. On the right-bottom corner, the NACC-α (the
plastic volumetric strain hardening variable) is also visualized to indicate the fracture pattern, where red indicates significant material fractures.

memory usage or the data-accessing cost. Note that if CFL condition
is violated, the premise for the G2P2G pipeline reformulation will no
longer be valid. Thus, the execution of the G2P2G kernel could fail
due to the out-of-bound shared memory access. If such a situation
happens, one needs to re-run the solver with a shorter stepping
time until the CFL condition is satisfied.

Compute Dt. The time step size dt for MPM evolution should be
carefully chosen under the restriction of CFL condition to preserve
the numerical stability while at the same time as large as possi-
ble to accelerate the simulation process. In order to satisfy both
requirements, the maximum velocity of particles is typically used
to compute dt . However, since the state of other particles cannot
be inferred during the execution of a single G2P2G kernel thread,
retrieving such a global quantity inside the G2P2G kernel is impossi-
ble. As a substitute, we use the maximum velocity of the grid nodes,
which can be computed before entering the G2P2G kernel. Since
the particle velocities are interpolated from the surrounding grid
nodes, the maximum velocity of particles will not be larger than the
maximum grid velocity, and therefore the CFL restriction will be
conserved. Moreover, this method is more computationally efficient
indt estimation since the number of grid nodes is much less than the
number of material particles. Although this approach estimates a
more conservative dt , experimental results show little difference in
the computed dt (less than 1%) between the computation performed
with the maximum velocities of grid nodes and particles.

3.2 AoSoA
Particle data layouts and the corresponding memory access patterns
also significantly influence performance, since the particle attributes
constitute the majority of the simulation data. In general, for a
gather-style transfer, the particle memory throughput is at least
one order of magnitude larger than the throughput of the grid data,
making it impossible to cache all the particle data in the limited GPU
shared memory. However, it is feasible to cache the grid attributes
in the corresponding G2P kernel. For a scatter-style transfer, on
the other hand, each particle is commonly assigned to one specific
thread, making particles invisible to each other. It is, therefore, more
meaningful to cache the grid data instead of the particle attributes
to the shared memory. In both cases, inside the G2P or the P2G
kernel, there is at least a one-time reading from or writing to the
GPU global memory to access the particle data, which cannot be
cached for better performance. Therefore, optimizing the efficiency

of particle data accesses from GPU global memory becomes one of
the most significant factors when maximizing performance.

Although both state-of-the-art approaches [Gao et al. 2018b; Hu
et al. 2019a] use the GPU-tailored SPGrid variant for grid storage,
they adopt fundamentally different particle data structures and algo-
rithmic strategies. Gao et al. [2018b] stores particle attributes in an
SoA layout and devises a delayed-reordering technique to maintain
the particle order; without reordering, the change of the spatial
distribution of particles may lead to an insufficient GPU cache line
utilization and cause performance degradation. To get rid of the
cost of the particle reordering, Hu et al. [2019a] uses an AoS lay-
out, making the performance less sensitive to the particle order.
Nevertheless, the performance is still limited by the non-coalesced
read/write of particle attributes from/to the GPU global memory.
To exploit the advantages of both SoA and AoS layouts without

compromising performance, we devise an AoSoA data structure to
store particle attributes. The particles are grouped according to their
positions, such that particles mapping to the same block can be gath-
ered together in the memory. We adopt an SoA structure to store the
particle attributes inside each group, while the particle groups are
organized using an AoS structure. With such a design, the proposed
AoSoA particle data structure has the following advantages:

• As long as the SoA group size is a multiple of the CUDA warp size,
each warp of threads can access (read and write) particle data in
a coalesced manner to ensure bandwidth efficiency.
• The particles are grouped according to their positions, and the
particle groups are organized in an AoS layout. Therefore, each
block (a 4 × 4 × 4 cell size in our pipeline) of particles resides
in contiguous memory, easier for faster migration among multi-
GPUs. Note that the SoA layout does not possess such property
as particle attributes are stridden across the GPU memory. Such
a design suits better for the proposed G2P2G pipeline, wherein
each CUDA block handles only one particle block.
• By organizing particles inside each particle block with a finer
granularity, we can reduce memory usage bymaking each particle
block to occupy a minimal amount of memory to accommodate
the particles inside; see details in the binning strategy paragraph.

Particle Bins. To devise an appropriate particle data structure that
possesses these properties, we introduce the concept of particle
bins, inspired by the designs of SPGrid [Setaluri et al. 2014] and
Hierarchical Particle Buckets [Bailey et al. 2013; Hu et al. 2019a].

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

30:8 • Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang

Attributes for Fluid Extra Attributes for Solid

...
0

1

31
0

Px

...

0
1

31
0

Py

...

0
1

31
0

Pz

...

0
1

31
0

F00

...

0
1

31
0

F10

...

0
1

31

F22...

...

0
1

31
0

m

Fig. 7. Binning. The internal layout of each particle bin is SoA. In this
example, the array length of the particle bin equals to the thread group size
on the NVIDIA GPU architecture (i.e., 32 for an NVIDIA GPU warp) for
coalesced memory access within a bin. The number of properties is flexible
according to the material; we used 4 for fluids and 13 for solids.

One intuitive idea is to group particle data in particle blocks
such that particles that belong to the same grid block are gathered
together. In a single particle block, the particle then becomes the
basic unit, with the particle attributes corresponding to the grid
channels in the conventional SPGrid. However, compared to the grid
block, the particle block would suffer from the large granularity and
the uncertainty of the in-use number of particles. In particular, the
number of particles residing in a single block is generally orders of
magnitude larger than the number of grid nodes, and each particle
usually contains more attributes than a grid node. Thus, the actual
size of a particle block could be much larger than a grid block.
Additionally, the number of particles inside a particle block changes
dynamically throughout the simulation, causing memory waste and
additional bookkeeping operations.

To remedy these problems, we further group the particles inside
a single block into particle bins; the size of a particle bin can be cus-
tomized as needed. For performance considerations, we recommend
setting the bin size to be a multiple of the thread group size on a
given GPU architecture. For example, one can set the bin size as 32,
which is the size of a CUDA warp on an NVIDIA GPU.

As illustrated in Fig. 7, particle data is organized in an SoA lay-
out within each particle bin. In this way, coalesced global memory
accesses are ensured with the CUDA 32-, 64-, or 128-byte transac-
tions that are aligned to these sizes. Another advantage of using
particle bins instead of a monolithic SoA particle block is related to
the page management in the virtual memory system. For example,
a particle bin containing 64 particles, with each particle owning 16
float-type attributes, consumes a 4KB memory space. In contrast,
the particle block with the same setting would consume a space
much larger than the 4KB configuration. Although the actual page
size in CUDA might differ from the CPU page setting in practice,
the particle binning strategy still provides the potential to better
utilize the automatic CUDA unified virtual memory management.

The mapping from a block to its particles is implemented through
theHierarchical Particle Bucket design. Specifically, particle attributes
and particle indices are stored separately in particle blocks and par-
ticle buckets, both in a 4 × 4 × 4 block granularity. Each particle is
reached hierarchically through the block index and the local index
inside the block. In practice, an upper bound of the particle bucket
size is predetermined statically at compile-time, the maximum num-
ber of bins inside a block is predetermined by the bucket size when
compiling, and the number of bins that each block contains can also
be decided at run-time before execution. However, as illustrated in
Fig. 8, such a uniformly allocated particle-block memory may cause
a significant memory waste. To further reduce memory usage, we

Uniform

Compact

In Use SavedWasted

Block 1

bin 0

Block 0

bin 0 bin 1

Block 1

bin 2 bin 3bin 1bin 0

Block 0

bin 2 bin 3bin 1bin 0

Fig. 8. Compact storage. Particles are often unequally distributed in space.
Hence, uniformly allocating fixed memory space for each particle block
would result in a significant amount of unused memory. Instead, a more
efficient strategy is to allocate just enough particle bins for each block
according to the current distribution of particles.

count the number of bins in-use and establish a mapping from the
block ID to the bin ID through a lightweight exclusive scan.

Binning Strategy. There are typically two strategies to reduce the
write conflicts in the P2G kernel:
• Group particles by cells, reduce at warp-level, perform a single
shared memory atomic increment per warp, and perform a single
global memory atomic increment per block [Gao et al. 2018b].
• Leave particles unsorted to reduce the chances of atomic-write
conflicts and avoid the warp-level reduction [Hu et al. 2019a].
The first method imposes restrictions on the order of the particles,

which cannot be satisfied in the context of the G2P2G pipeline;
particles may advect to the neighbor cells after the G2P transfer in
the G2P2G kernel, breaking the cell-based sorted order.

Adopting ideas from the second strategy, we use a pseudo-coloring
procedure and collect particles from different cells within a particle
block to build the particle bins. The algorithm is outlined in Alg. 1,
which stops when there are not enough particles left to form a bin.
With this strategy, particles inside a single bin are forced to write to
different nodes unless the bin is formed after satisfying the stopping
condition; i.e., there exist at least two particles from the same cell
inside this bin. As a result, the chance of write conflicts occurring
within a warp is significantly reduced. Note that the warp aggre-
gated atomic increment is required to ensure the correctness of the
Alg. 1; see Adinets [2014] for more implementation details.

Update Particles. Inside the G2P2G kernel, the maintenance of the
particle structure must be performed after the particle advection. To
ensure the execution correctness of the proposed G2P2G pipeline,
we adopt a double buffer strategy for both particles and grids; i.e., the
G2P2G kernel reads from and writes to different particle/grid buffers.
To maintain the particle structure, a naive scheme can be adopted
to update the particle attributes in place while the particle orders
are rearranged in an extra kernel incurring additional overhead.
Following the delayed-ordering [Gao et al. 2018b], we postpone the
particle reordering in the G2P2G kernel to the next time step.
Specifically, the updated particle attributes are written back to

the particle blocks in the coalesced manner, and the particle indices
are inserted into the particle buckets according to their updated
positions. In the following time step, we determine the particle at-
tributes in the previous particle block buffer from the indices saved
in the current particle bucket. Theoretically, the particle block ID

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

A Massively Parallel and Scalable Multi-GPU Material Point Method • 30:9

ALGORITHM 1: Distribute particles from cell buckets to block bucket
// ppc: particles per cell
Given: cell_buckets, ppcs, maxppc, blockid, cellid
// ppb: particles per block
Output: block_bucket, ppbs
Procedure:

laneid← cellid mod warpsize
ppc← ppcs[cellid]
pidic← 0 // pidic denotes local particle index in cell
while pidic < maxppc do

if pidic < ppc do
// pidib denotes local particle index in block
pidib← aggregate_atomicadd(laneid, ppbs[blockid])
block_bucket[pidib] ← cell_bucket[pidic]

end if
syncthreads_in_block()
pidic← pidic + 1

end while

and its local index inside the block would change after the parti-
cle advection. However, we do not update the hierarchical particle
indices immediately after updating particle positions. Instead, we
compute the new indices from the advection vector and their origi-
nal location; as indicated by the CFL bound, the particles will move
at most a one-cell-distance in each time step. In practice, we use −1,
0, or +1 to indicate the particle’s movement in x , y, or z direction
to form the 3D advection vector (i.e., one specific vector from a set
of 27 possibilities). Given the previous block ID and the advection
information, the new particle indices are then uniquely determined
by a spatial hash with a 32-bit integer.

4 MULTI-GPU PIPELINE
Using multi-GPUs for MPM simulations affords significantly larger
simulations and shortens the overall simulation time. To extend from
using a single GPU to running on multi-GPUs, we divide the whole
simulation domain into partitions according to the device number
and assign one partition to one GPU device. The load balancing
is one of the essential considerations when distributing partitions
for multi-GPU applications. Depending on the dynamics of the
simulation, the same partitioning scheme could result in drastically
different performances on various problems. Ultimately, the parallel
efficiency of multi-GPUs is primarily determined by 1) how large the
halo region compared to the whole partition, and 2) how equally the
partitions are distributed on all devices. Here, we focus on arranging
the computations once the partitioning strategy is confirmed.

Additionally, we maintain the sparse spatial information accord-
ing to particle positions at each time step. The partition on each
device is maintained through a list of activated blocks that cover
all particles. Since the particles may rasterize to grid blocks, which
can be halo blocks and shared by multi-GPUs, the attributes on gird
blocks must be synchronized after the P2G transfer. Therefore, in ad-
dition to partitioning strategies, efficient utilization of multi-GPUs
for MPM also needs to consider:

• Halo Block Tagging: tag the blocks that overlap partitions on other
devices (i.e., the halo blocks).

G2P2G update
partitions

update
partitions

non-halo
G2P2G

gather & send
halo

halo
G2P2G

update
partitions

non-halo
G2P2G

gather & send
halo

halo
G2P2G

receive & reduce halo

halo
tagging

update grid

update grid

receive & reduce halo

Single-GPU

Naïve
Multi-GPU

MGSP{
Fig. 9. Instruction pipelines. The additional operations in the multi-GPU
MPM compared to the single-GPU MPM are displayed in red. By masking
these halo-region-related data transfers with the execution of the G2P2G
kernel, one can achieve more optimized scaling results with multi-GPUs.

• Halo Block Merging: share block data in the halo region with
other devices after executing the G2P2G kernel, for grid reduction
and/or particle migration depending on partitioning strategies.
In the following subsections, we introduce detailed designs of two

MPM-tailored variations of the most widely adopted partitioning
methods, i.e., the static geometric partitioning methods.

4.1 Multi-GPU Static Partitioning by Particles (MGSP)
MGSP is an ideal option for solid simulations, including elastic jellos,
sand, and other granularmaterials, due to the stable halo distribution
of solids. Since the overall shape of solid models remains intact
even under large deformations, the halo regions typically reside on
the model surfaces. Even when significant fractures happen (see
examples in Figs. 1 and 6), the halo regions still only occupy a small
portion of the whole partition.

Carrying out both halo block tagging and halo block merging relies
heavily on multi-GPU communication. The latency of the related
operations relies highly on the underneath hardware setup. In most
consumer-level machines, multi-GPU devices are connected via the
slow PCI-Express x16 Gen 3, which may lead to high communica-
tion latency. Fortunately, nearly all CUDA devices with compute
capability of 1.1 or higher can concurrently perform the memory
copies and computing kernels. Therefore, it is possible to hide the la-
tency by overlapping data transfers with computations (i.e., G2P2G)
through CUDA streams, as shown in Fig. 9.

Halo Block Tagging. For each device, to acquire its intersections
with other devices, the coordinates of the active blocks from all
the other devices are gathered and then checked in a local hash
table. We perform the halo block tagging as an additional step of
the MPM algorithm; see Fig. 10. Due to the data dependencies, this
step should not be overlapped with other computations. The data
size of the active block coordinates increases with the growth of
the simulation scale when more blocks are involved. However, in
general, such data size is still small, making this additional overhead
introduced by multi-GPU extensions insignificant.

Halo Grid Reduction. The heavy workload of the G2P2G kernel
provides the potential of overlapping the memory copies with the
computations; see an illustration in Fig. 9. Based on the halo block
tagging results, we split the particle blocks on each device into two
groups. One group produces data for halo grid blocks during the
G2P2G execution, whereas the other only works with the interior
grid blocks. TheG2P2G kernel is first launched for grids and particles
inside the halo regions. After that, the following two operations are
performed simultaneously with different CUDA streams, i.e., 1) the

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

30:10 • Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang

GPU 1 Block

GPU 2 Block

Halo Regions

Assigned, Transferred,
and Advected

Transferred and Advected

Advected

Fig. 10. Halo block tagging.We tag grid blocks with three labels: assigned,
transferred, and advected. Assigned grid blocks are the blocks where par-
ticles are residing in. Transferred grid blocks contain the grid-nodes that
particles may write to; e.g., with quadratic B-spline kernel, each particle may
write to neighbor nodes within a three-cell distance. Advected grid blocks
represent the blocks where particles may advect to after the G2P and the
particle advection. The transferred and the advected grid blocks may contain
no particles in the current time step. In the context of multi-GPU MPM, the
partition from one device can overlap partitions from other devices. These
overlapping regions (i.e., halo regions) may include all three types of grid
blocks. The grid data in the halo regions should be shared and synchronized
by the corresponding GPUs to ensure the execution correctness.

halo grid attributes on each partition are gathered and sent to other
partitions, and 2) the G2P2G kernel is evaluated on the particles
and grids outside the halo regions on each device. In this way, the
overhead of the memory copies among GPUs is masked with the
G2P2G execution for interior particles and grids.

4.2 Multi-GPU Static Partitioning by Space (MGSS)
In an MPM simulation, it is possible that the size of halo regions
among multiple partitions grows beyond a threshold, such that the
latency of the non-halo G2P2G kernel is not high enough to mask
the device-to-device memory copies. This situation is especially
common for fluid simulations where fluids can theatrically mix (see
Fig. 15 as an example), making halo sizes increasing dramatically
as time goes by. In such cases, re-partitioning particles is necessary
for load balancing, and statically partitioning by space is a simple
yet efficient strategy.

Halo Block Tagging. Unlike inMGSP, the blocks in the halo region
in MGSS can be tagged without the knowledge of any other parti-
tion. While updating the partition, blocks located in the spatially
predefined halo region are directly tagged as halo blocks, and halo
regions can be shared by two or more devices depending on the
splitting scheme. The handling of the tagged halo grid blocks in
MGSS is the same as inMGSP, but the particles moving to partitions
on other devices are also migrated in addition to the grid data.

Fig. 11. Sand armadillo. In this simulation, two sand armadillos hug and
smash together using 4 GPUs with 55M particles and grid resolution 512 ×
512 × 1024. Fine details are captured with a small ∆x .

Halo Particle Migration. Although the overhead of halo tagging
inMGSS is avoided, and halo grid reduction inMGSS is similar to the
one in MGSP, there is an additional task in MGSS; namely, particles
moving out of the current domain must be migrated to the corre-
sponding device. This operation is easily supported by our AoSoA
particle data structure since particles are already grouped by blocks,
and it is efficient to retrieve these particles before streaming. Fur-
thermore, gathering particles in halo regions in bulk and streaming
to other devices are always better than sending the same amount of
data in pieces at a time, e.g., particle by particle. Therefore, the same
AoSoA particle data structure also specifies the particle buffer array
for sending halo data to and receiving data from other devices.

The migration of halo particles in MGSS is inherently more mem-
ory intensive than sharing halo grid blocks in MGSP. In general,
particles have more quantities compared to grid nodes, and the
number of particles inside each particle block is an order of magni-
tude larger than the number of grid nodes inside each grid block.
Consequently, within the same halo region, particle blocks use sig-
nificantly more memory than grid blocks. Moreover, the number
of particle bins at each location near the boundary of a domain is
only known after G2P2G kernels in all neighboring partitions are
done, which breaks the premise of “compact storage” (Section 3.2).
Fortunately, the maximum number of such halo blocks is bounded
and known at compile time and is small compared to the whole
domain. A simple workaround regarding the number of particle bins
is to preserve a space conservatively that is fit for the maximum
number of particles specified in the “Hierarchical Particle Bucket.”

5 IMPLEMENTATION
In this section, we provide essential implementation details. More
information is included in the supplemental material.

Multi-GPU Communication. Although there are multiple CUDA
libraries (e.g., OpenSHMEM [Chapman et al. 2010], NCCL [Nvidia
2019]) for inter-GPU communications, we directly use the low-level
memory APIs for better control over the double-buffering scheme
and halo communication. The halo data can be manually copied
through host, peer-to-peer, GPUDirect, or to exploit the use of
Unified Virtual Memory (UVM) and let CUDA handle on-demand
requests of halo data in UVM. However, page faults during kernel
executions are expensive, and pre-fetching block-by-block before

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

A Massively Parallel and Scalable Multi-GPU Material Point Method • 30:11

kernel launching requires many CUDA API calls. Hence, we choose
to manually initiate the data transfers through multiple streams.

Memory Consumption. Table 1 summarizes the memory footprint
in our pipeline and Hu et al. [2019a]; each particle block contains
4096 particles in total. As shown in Fig. 7, there are 16 bytes for a
fluid particle and 52 bytes for a solid particle in our G2P2G pipeline.
In contrast, in the conventional pipeline, there are 68 bytes and 100
bytes correspondingly. In our pipeline, the per-particle storage size
is reduced substantially, especially in the fluid case, due to particle
velocity being a kernel-local quantity. However, we need to maintain
two copies of the data structures due to the double-buffer strategy.
Table 1. Memory budget. We compare the number of particle blocks and
grid blocks with the block size 4 × 4 × 4. Here, numbers followed by n stand
for the number of particle blocks and m for the number of grid blocks. We
use 64 as the maximum number of particle-per-cell inside each grid cell; this
setting is more than sufficient for most MPM simulations (8 is the typical
setting). We have not observed any violations in any examples. Note that the
data in the second row represents the total memory cost from the double
buffering required by the G2P2G kernel.

particle buffer grid bucketfluid solid
conventional 278528n 409600n 1024m 16384n
G2P2G 131072n 425984n 2048m 16384n

Material-dependent Computation. The constitutive model related
particle-wise operations (elasticity, plasticity, etc.) are implemented
in separate device functions, and the correct function for a specific
material to call is automatically handled when utilizing the C++ sum
type variant. Thus, different materials are easily supported with
little changes in our approach.

Generalizations to Other MPMMethods. Not only is the AoSoA par-
ticle data structure compatible with different algorithmic or material
choices, but the G2P2G kernel is essentially a general operator evolv-
ing the grid state through transfers. With reasonable efforts, the
majority of existing MPM methods (including Jiang et al. [2017] and
Wolper et al. [2019]) can also be implemented with AoSoA+G2P2G.
In the case of implicit MPM, matrix-free linear solvers, as in Gao
et al. [2018b], can be implemented directly with the G2P2G fusion
strategy used for a single matrix vector product to improve per-
formance. Moreover, our AoSoA+G2P2G design can benefit other
hybrid particle-grid simulation methods, such as PIC/FLIP fluids,
with better performance, more efficient memory usage, and flexible
extension to multi-GPUs.

6 BENCHMARKS AND PERFORMANCE EVALUATIONS
In this section, the fixed corotated constitutive model [Stomakhin
et al. 2012] is applied by default for all benchmarks unless stated oth-
erwise. We use microseconds as units for all timings. The codebase
used to generate these examples is made publicly available.

For experiments with different materials, we experimented with
multiple parameters, which are set as easy-to-set compile-time
constants. For instance, the crashing concrete scene is tested with
Young’s modulus ranging from 6e6 to 6e8 for grid resolution 512 ×
512×512 and 1024×1024×1024, since concrete is really a mixture of
materials with no absolute stiffness. We choose one of the material

parameter settings we tested for the final results and list them in
Table 5 for reproduction purposes.

In the following subsections, we start with the single-GPU per-
formance comparison against the state-of-the-art methods. Two
ablation studies are presented to analyze the efficacy of the pro-
posed AoSoA+G2P2G design. We then move to multi-GPU settings
with discussions of scalability, comparisons of two partitioning
strategies, and demonstrations of large-scale simulations.

6.1 Single-GPU Performance
6.1.1 Speedup over State-of-the-artMethods. When comparingwith
the state-of-the-art method [Hu et al. 2019a], we apply the optimal
settings listed in Hu et al. [2019a], i.e., AoS for particles, and SP-
Grid for grid blocks. Moreover, we set up the following scenes for
performance evaluations.
• dragons. 775196 particles, 256 × 256 × 256 grid.
• bomb falling. 984018 particles, 256 × 256 × 256 grid.
As shown in Table 2, our pipeline reaches around 2× speedup

compared to the state-of-the-art approach, Hu et al. [2019a]. Un-
der a more fair setting with the initial sorting of particles in Hu
et al. [2019a] disabled, we further achieve a 2.5× speedup. Measured
speedups show consistencies on NVIDIA GPUs for both gaming
(RTX series) and computing (Quadro series) and for different gener-
ations.
Table 2. Single-GPU performance comparison. All candidate single-
GPU MPM methods use the MLS-MPM transfer method in explicit time
integration. The per-time-step timing results are run on NVIDIA RTX 2080
and Quadro P6000 and gathered after objects hit the ground for better eval-
uation. The Hu et al. [2019a]* benchmark disabled the initial reordering.
The dragons* scene reduces particles per cell by half.

Quadro P6000 RTX2080
Hu et al. [2019a] Hu et al. [2019a]* ours Hu et al. [2019a] Hu et al. [2019a]* ours

dragons 4.3 5.0 2.0 3.0 3.5 1.5
dragons* 2.6 3.0 1.3 1.8 2.0 0.9
bomb falling 6.4 6.7 3.4 4.2 4.4 2.5

We also compare the timing against an open-source, heavily op-
timized CPU-based MPM codebase [Fang et al. 2019] (a SIMD vec-
torized implementation provided by its authors). The experiment is
conducted in an elastic sphere colliding scene with particle counts
ranging from 5 to 40 million. On a workstation with an Intel 8086K
CPU and a single Quadro P6000 GPU, our GPU MPM achieves 110
to 120 × per-time-step speedup, as summarized in Table 3.
Table 3. Performance comparison between an SIMD implementation
vs our GPU pipeline. CPU: Intel 8086K. GPU:Quadro P6000 GPU.
of particles 5m 10m 15m 20m 25m 30m 35m 40m
cpu time 667.70 1442.90 2110.20 2949.60 3875.01 4671.09 5148.63 5925.24
gpu time 5.97 11.91 18.22 27.38 32.30 38.54 43.67 50.15

6.1.2 Ablation Studies.

G2P2G Speedup. We implement Hu et al. [2019a] with the pro-
posed G2P2G kernel. As shown in Table 4, all of the test cases have
achieved around 40% speedup, except for the cube case where the
model is generated with uniform sampling rather than Poisson sam-
pling. With perfectly balanced particle distribution in the cube case,
the negative impact of redundant particle data access pattern in P2G
and G2P pipelines is mitigated. Moreover, the G2P2G kernel may
lessen the latency-hiding capability [Laine et al. 2013] compared to

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

30:12 • Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang

conventional separate transfer kernels (i.e., P2G and G2P), limiting
the performance gain in the cube case. In addition to improving per-
formance, the proposed G2P2G pipeline also decreases the storage
size required for each particle, making it more favorable for particle
migrations in the multi-GPU pipeline.
Table 4. Ablation study. The first timing column is the sum of the timings
of P2G andG2P kernels. The timing in the second timing column is measured
by replacing P2G and G2P kernels with the proposed G2P2G kernel. The
timing in the third timing column is measured by replacing the AoS layout
with the proposed AoSoA layout on top of the G2P2G kernel. The speedup is
calculated by comparing it with the reference time [Hu et al. 2019a]. Both
bomb failing and dragons scenes use irregular geometries; all dragons scenes
have the very same geometry but are sampled with different numbers of
particles per cell, and bomb failing scene is much denser in space. The cube
scene is a uniformly sampled cube with particles ordered. All timings are
computed using an NVIDIA RTX 2080 graphics card.

Hu et al. [2019a] G2P2G AoSoA+G2P2G
ref time time speedup time speedup

dragons (775,196) 3.98 2.91 1.37× 1.33 2.99×
dragons (619,916) 3.18 2.3 1.38× 1.15 2.77×
dragons (388,950) 2.04 1.47 1.39× 0.78 2.62×
bomb falling (3,193,038) 16.95 12.25 1.38× 7.00 2.42×
cube (262,144) 0.99 1.10 0.9× 0.74 1.34×

AoSoA Speedup. On top of the G2P2G pipeline, we further change
the AoS in [Hu et al. 2019a] to our proposed AoSoA layout. As
shown in Table 4, the combined improvements enhance the transfer
kernel with around 3× speedup without introducing any additional
overheads of the maintenance or the storage of particle data.

6.2 Multi-GPU Scalability
The scaling with multi-GPU devices is an essential aspect of eval-
uating the efficacy and robustness of the algorithm. Ideally, the
performance should scale with the number of devices and remain
robust when simulating scenes that have different patterns for the
halo regions. We perform scaling benchmarks on a workstation
with one Intel Core i7-8086K CPU, four NVIDIA Quadro P6000 GPUs,
and 64GB RAM assembled on a Z390 motherboard.

Weak Scaling. We assign each GPU device with one giant cube
containing 4,096,000 particles. All cubes are either arranged com-
pactly or side-by-side. In the compact layout, each partition shares
a certain amount of halo regions with partitions from all the other
GPU devices. In the side-by-side layout, each partition is only in
contact with at most two neighboring partitions. The weak scaling
comparisons are shown in Figs. 12 and 13.

Strong Scaling. Four cubes of the same size that contains 4,741,632
particles are used to form a long cuboid. The scene is evenly par-
titioned and assigned to multi-GPU devices. The strong scaling
comparisons are shown in Fig. 14.

Results. Taken together, the scaling results indicate that theG2P2G
kernel, as the bottleneck of the algorithm, is scaling almost linearly
when each GPU is saturated by enough computations. Addition-
ally, our multi-GPU MPM pipeline scales almost perfectly with the
increasing number of GPUs. The improved efficiency with respect
to memory access and data communication (e.g., fewer attributes
stored, coalesced data accessing, and particle data locality) is also
preserved in multi-GPU systems.

1 2 3 4
Number of GPUs

0

2

4

6

8

10

Ti
m

e
(m

s) G2P2G
Halo
Total

(a)

1 2 3 4
Number of GPUs

90

92

94

96

98

100

Ef
fic

ie
nc

y
(%

)

G2P2G
Total

(b)

Fig. 12. Weak scaling; compact layout. (a) The per time-step wall time
remains steady with an increasing number of GPUs for the G2P2G and
overall performances. The additional overhead of halo tagging is growing but
remains insignificant. (b) Both the G2P2G kernel and the overall efficiencies
still stay around 95% even when employing 4 GPU devices.

1 2 3 4
Number of GPUs

0

2

4

6

8

10

Ti
m

e
(m

s) G2P2G
Halo
Total

(a)

1 2 3 4
Number of GPUs

90

92

94

96

98

100

Ef
fic

ie
nc

y
(%

)

G2P2G
Total

(b)

Fig. 13. Weak scaling; side-by-side layout. (a) The per time-step wall
time remains steady with an increasing number of GPUs for the G2P2G and
overall performances. The additional overhead of halo tagging is growing but
remains insignificant. (b) Both the G2P2G kernel and the overall efficiencies
stay above 95% even when employing 4 GPU devices.

1 2 3 4
Number of GPUs

0

10

20

30

40

Ti
m

e
(m

s) G2P2G
Halo
Total

(a)

1 2 3 4
Number of GPUs

90

92

94

96

98

100

Ef
fic

ie
nc

y
(%

)

G2P2G
Total

(b)

Fig. 14. Strong scaling; side-by-side layout. (a) Both G2P2G and overall
performances scale well with an increased number of GPUs. The additional
overhead of halo tagging is growing but remains insignificant. (b) The loss of
the strong scaling of G2P2G is trivial even when employing 4 GPU devices,
while the overall strong scaling drops to around 90%.

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

A Massively Parallel and Scalable Multi-GPU Material Point Method • 30:13

Table 5. Parameters and timings. We summarize the parameters of particle numbers, grid resolutions, ∆x , the average time per frame, and the maximum
∆t for various experiments described in Section 6.4. These examples are simulated with different materials; material-related information is recorded in the last
two columns. Specifically, FC denotes the fixed corotated material, NACC for Non-Associated Cam-Clay, and DP for the Drucker-Prager elastoplasticity. In
addition to the basic settings of the material (density ρ , Youngs Modulus E , and Poisson Ratio ν), we also include other material-specific parameters. The
material parameters are listed in the following order: 1) FC: (ρ , E , ν), 2) NACC: (ρ , E , ν , α0, β , ξ ,M), 3) DP: (ρ , E , ν , f a, co), and 4) Fluid: (ρ , k , γ). We
recommend review the corresponding papers for further information about parameters.

example particle # GPU # grid resolution ave sec/frame ∆tframe ∆x max∆tstep material material parameters
(Fig. 2) bomb falling 134,007,186 8 512 × 2048 × 512 59.56 1/48 1/256 2.71 × 10−5 FC (100, 3 × 105, 0.2)
(Fig. 3) candy bowl 22,900,536 4 1024 × 1024 × 512 4.15 1/48 1/256 2.10 × 10−4 FC (100, 3 × 103, 0.2)
(Fig. 1) crushing concrete 93,790,217 4 1024 × 1024 × 1024 236.89 1/240 1/1024 1.74 × 10−6 NACC (2240, 6 × 108, 0.2, −0.01, 0.5, 0.8, 1.85)
(Fig. 6) soil falling 52,904,854 4 512 × 512 × 512 57.38 1/48 1/256 1.65 × 10−5 NACC (2, 3 × 104, 0.3, −0.006, 0.3, 0.5, 1.85)
(Fig. 11) sand armadillo 55,508,474 4 512 × 512 × 1024 34.39 1/48 1/512 3.58 × 10−5 DP (20, 1 × 104, 0.4, 30, 0)
(Fig. 15) single dam-break 48,608,497 4 512 × 2048 × 512 15.17 1/240 1/256 1 × 10−5 Fluid (1000, 4 × 104, 7.15)

6.3 Partitioning Comparisons
AlthoughMGSP is a perfectly balanced partitioning method in terms
of the number of particles, the overhead due to halo block tagging
would increase with more GPU devices employed. Moreover, when
the size of the halo regions becomes large enough, the memory
latency will increase and become the dominant factor compared to
the latency of the G2P2G kernel. Such a performance degradation
may frequently happen in fluid simulations where fluid may sig-
nificantly mix together as time goes by, resulting in an increasing
number of halo region storages and computations. In such cases,
it would be more efficient to use MGSS where the halo region size
stays the same throughout the simulation time; we demonstrate the
partitioning using MGSS throughout a dam-break scene in Fig. 15.

6.4 Large-scale Simulations
We showcase a suite of simulations with various materials to demon-
strate the scalability of our multi-GPU MPM algorithm. The follow-
ing constitutive models with plasticity are implemented to demon-
strate the applicability of our methods to diverse materials: 1) fixed
corotated [Stomakhin et al. 2012] to simulate elastic jello, 2) Non-
Associated Cam-Clay (NACC) [Wolper et al. 2019] to reproduce soil
and concrete, 3) Drucker-Prager elastoplasticity [Klár et al. 2016]
for sand animation, and 4) weakly compressible fluid [Tampubolon
et al. 2017] to generate water. All timings and spatial resolution
settings are summarized in Table 5. Additionally, we also provide
material related parameter settings for reproduction purposes.
We first demonstrate the scalability of the proposed multi-GPU

MPM in Fig. 2, wherein 13,346 bombs fall onto the ground. This
example is run on 8 GPUs, with the grid resolution 512× 2048× 512,
134M particles, and each frame finished within 1 minute on average.
To the best of our knowledge, no prior work has achieved such
a large-scale simulation with MPM on with a single machine. In
addition to the 8-GPU test, we also evaluate this scene on 4 GPUs
with 6,688 bombs (67M particles). In a 4-GPU context, proper scaling
is achieved with each frame simulated in 49.14 seconds on average.

Using the fixed corotated elastic material, we fill the bowl in Fig. 3
with 6,786 candies (23M particles) with each frame finished within
5 seconds on average. In other words, one only needs 20 minutes
to obtain the results of a 200-frame simulation with 20M particles,
which usually would take several days if only CPU-based MPM
algorithms were adopted.
We crush concrete in Fig. 1 with NACC models, showing hy-

draulic press experiments on a concrete cylinder. The simulation
domain is discretized into a 1024×1024×1024 grid with ∆x = 1/1024,

while the concrete cylinder is represented by 93.8M particles. On a
4-GPU workstation, each frame is finished within 4 minutes. Note
that only 4 (instead of 8) GPUs are employed to simulate 96M par-
ticles, indicating a strong potential of the proposed AoSoA+G2P2G
in simulating large-scale scenes with limited memory resources.
Moreover, we further test the same scene with different settings
of resolutions, particle numbers, and material parameters. Timing
statistics show that it takes only 17 seconds to simulate the same
scene with 12M particles and grid resolution 512 × 512 × 512.
As another NACC example, three soil chunks fall, fracture, and

mix together in Fig. 6; each frame with 52M particles is finished
under 1 minute. In comparison, as reported in Wolper et al. [2019],
a NACC example with only 1.67M particles consumes at most 10
minutes on a CPU-based MPM implementation. Similar to Fig. 1,
we visualized the NACC-α to indicate the crack propagation.

Sand material is used to create two armadillos smashing together
with fine details captured in Fig. 11. This scene has 55.5M particles
with grid resolution 512 × 512 × 1024. Simulating each frame takes
less than 30 seconds using the proposed multi-GPU MPM pipeline.
We demonstrate a large-scale fluid simulation with the MGSS

strategy in a single dam-break experiment, shown in Fig. 15. The
topology of the fluid changes substantially as the simulation evolves,
resulting in different portions of the fluid to mix together as time
goes by. The size of the halo region would increase substantially
as the simulation proceeds should we utilize the MGSP strategy; it
would lead to significant performance degradation as most of the
run-time would be spent in inter-GPU communication. In contrast,
with the MGSS strategy, even though different portions of fluid
are permeating into each other, the multi-GPU partitions are still
relatively well balanced with a fixed-size halo region.

7 LIMITATION AND FUTURE WORK
Limitation. Our G2P2G kernel inherently requires a double buffer

strategy for simultaneous read and write of particle and grid data.
This fact could offset some of the savings of memory from the per-
particle storage size. Although we use compact storage for particle
attributes, their indices are still managed in the corresponding buck-
ets that are pre-allocated with a uniform and conservative size. This
design imposes restrictions on more irregular MPM simulations
where the number of particles per cell is significantly larger.

Future Work. For simplicity, we adopt the “pre-allocation for all”
strategy for all spatial data structures specified in our codebase due
to the lack of a dedicated allocator. A more customized allocator
could provide more flexibility in terms of memory management,

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

30:14 • Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang

Fig. 15. Single dam-break with MGSS.We simulate a fluid dam-break with 48M particles and theMGSS partition strategy. Each color denotes particles
running on a single physical GPU device. With each device assigned approximately the same size spatial domain, all particles are evenly partitioned to 4 GPUs.

e.g., on-demand allocation. There is also room for improvement
in terms of robustness. We will work on an adaptive and unified
framework that supports multi-material simulations, including both
solids and fluids, and more flexible load balancing by allowing for
dynamic re-partitioning of the whole domain, which would change
the method of halo-region identification and memory preservation
for halo particles. Deploying to distributed systems, e.g., cloud or
multi-GPU clusters, is another challenging yet promising direction
worth of research efforts.

In the robotics community, we recently observe a growing amount
of work that exploits physics-based simulation to facilitate robot
learning in navigation [Xie et al. 2019], embodiment mapping [Liu
et al. 2019], soft robot locomotion [Hu et al. 2019b], tool-using [Zhu
et al. 2015], inferring human utility [Zhu et al. 2016], and causality
[Edmonds et al. 2020]. These tasks are traditionally considered to
be extremely challenging. With the capability to run large-scale
simulations on multi-GPUs with a relatively short simulation time,
we expect the robot learning community would start to adopt high
fidelity simulations to enable robots acquiring knowledge and skills
swiftly with minimal human intervention or supervision.

ACKNOWLEDGMENTS
We thank Yuanming Hu at MIT for useful discussions and proofread-
ing, Feng Gao at UCLA for his help on configuring workstations,
and the anonymous reviewers for their valuable comments. X. W.
and M. T. were supported in part by the National Key R&D Pro-
gram of China (2017YFB1002703), and NSFC (61972341, 61972342,
61732015, 61572423). Penn authors were supported in part by the
NSF CAREER (IIS-1943199) and CCF-1813624, DOE ORNL contract
4000171342, a gift from Adobe Inc., NVIDIA GPU grants, and Hou-
dini licenses from SideFX. UCLA authors were supported in part
by ONR MURI N00014-16-1-2007, DARPA XAI N66001-17-2-4029,
and ONR N00014-19-1-2153. This research was supported by the
Exascale Computing Project (17-SC-20-SC). This manuscript has
been authored by UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government re-
tains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or al-
low others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-plan).

REFERENCES
M. Aanjaneya, M. Gao, H. Liu, C. Batty, and E. Sifakis. 2017. Power diagrams and sparse

paged grids for high resolution adaptive liquids. ACM TOG 36, 4 (2017), 140.
A. Adinets. 2014. CUDA Pro Tip: Optimized Filtering with Warp-Aggregated

Atomics. https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-
aggregated-atomics/.

T. Amada, M. Imura, Y. Yasumuro, Y. Manabe, and K. Chihara. 2004. Particle-based fluid
simulation on GPU. In ACM workshop on general-purpose computing on graphics
processors, Vol. 41. 42.

M. Ament, G. Knittel, D. Weiskopf, and W. Strasser. 2010. A parallel preconditioned
conjugate gradient solver for the poisson problem on a multi-gpu platform. In
Parallel, Distributed and Network-based Processing. IEEE, 583–592.

D. Bailey, I. Masters, M. Warner, and H. Biddle. 2013. Simulating fluids using a coupled
voxel-particle data model. In SIGGRAPH 2013 Talks. ACM, 15.

G. L. Bernstein, C. Shah, C. Lemire, Z. Devito, M. Fisher, P. Levis, and P. Hanrahan. 2016.
Ebb: A DSL for physical simulation on CPUs and GPUs. ACM TOG 35, 2 (2016), 21.

J. U. Brackbill and H. M. Ruppel. 1986. FLIP: A method for adaptively zoned, particle-
in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2 (1986),
314–343.

B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L. Smith. 2010.
Introducing OpenSHMEM: SHMEM for the PGAS community. In Proceedings of
PGAS Programming Model. 1–3.

N. Chentanez and M. Müller. 2011. Real-time Eulerian water simulation using a re-
stricted tall cell grid. ACM TOG 30, 4 (2011), 82.

N. Chentanez and M. Müller. 2013. Mass-conserving eulerian liquid simulation. IEEE
Transactions on Visualization and Computer Graph (TVCG) 20, 1 (2013), 17–29.

N. Chentanez, M. Müller, and T. Kim. 2015. Coupling 3D eulerian, heightfield and
particle methods for interactive simulation of large scale liquid phenomena. IEEE
Transactions on Visualization and Computer Graph (TVCG) 21, 10 (2015), 1116–1128.

J. M. Cohen, S. Tariq, and S. Green. 2010. Interactive fluid-particle simulation using
translating Eulerian grids. In 2010 Symp Interactive 3D Graphics and Games. ACM,
15–22.

L. Dagum and R. Menon. 1998. OpenMP: An industry-standard API for shared-memory
programming. Computing in Science & Engineering 1 (1998), 46–55.

G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for
the continuum simulation of granular materials. ACM TOG 35, 4 (2016), 102.

J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I.
Plotnikov, N. Aunai, et al. 2018. Smilei: a collaborative, open-source, multi-purpose
particle-in-cell code for plasma simulation. Computer Physics Communications 222
(2018), 351–373.

M. Ding, X. Han, S. Wang, T. F. Gast, and J. M. Teran. 2019. A thermomechanical
material point method for baking and cooking. ACM TOG 38, 6 (2019), 192.

O. Ding and S. Craig. 2019. Penalty Force for Coupling Materials with Coulomb Friction.
IEEE Transactions on Visualization and Computer Graph (TVCG) (2019).

J. M. Domínguez, A. JC. Crespo, D. Valdez-Balderas, B. D. Rogers, and M. Gómez-
Gesteira. 2013. New multi-GPU implementation for smoothed particle hydrody-
namics on heterogeneous clusters. Computer Physics Communications 184, 8 (2013),
1848–1860.

H. Carter E., Christian R. T., and Daniel S. 2014. Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel and
Distrib. Comput. 74, 12 (2014), 3202–3216.

M. Edmonds, X. Ma, S. Qi, Y. Zhu, H. Lu, and S.-C. Zhu. 2020. Theory-based Causal
Transfer: Integrating Instance-level Induction and Abstract-level Structure Learning.
In AAAI Conference on Artificial Intelligence (AAAI).

Oak Ridge Leadership Computing Facility. 2018. SUMMIT: Oak Ridge National Lab-
oratory’s 200 petaflop supercomputer. https://www.olcf.ornl.gov/olcf-resources/
compute-systems/summit/.

Y. Fang, Y. Hu, S. Hu, and C. Jiang. 2018. A temporally adaptive material point method
with regional time stepping. In Computer Graphics Forum, Vol. 37. Wiley Online
Library, 195–204.

Y. Fang, M. Li, M. Gao, and C. Jiang. 2019. Silly rubber: an implicit material point
method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM
TOG 38, 4 (2019), 1–13.

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

A Massively Parallel and Scalable Multi-GPU Material Point Method • 30:15

Y. R. Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A multi-scale model for simulating
liquid-fabric interactions. ACM TOG 37, 4 (2018), 51.

M. Gao, A. Pradhana, X. Han, Q. Guo, G. Kot, E. Sifakis, and C. Jiang. 2018a. Animating
fluid sediment mixture in particle-laden flows. ACM TOG 37, 4 (2018), 149.

M. Gao, A. P. Tampubolon, C. Jiang, and E. Sifakis. 2017. An adaptive generalized
interpolation material point method for simulating elastoplastic materials. ACM
TOG 36, 6 (2017), 223.

M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang. 2018b. Gpu
optimization of material point methods. In SIGGRAPH Asia 2018. ACM, 254.

J. Gaume, T. Gast, J. Teran, A. van Herwijnen, and C. Jiang. 2018. Dynamic anticrack
propagation in snow. Nature Communications 9, 1 (2018), 3047.

P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola. 2010. Interactive SPH simula-
tion and rendering on the GPU. In ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (SCA). Eurographics Association, 55–64.

Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A material point method
for thin shells with frictional contact. ACM TOG 37, 4 (2018), 147.

X. Han, T. F. Gast, Q. Guo, S. Wang, C. Jiang, and J. Teran. 2019. A hybrid material point
method for frictional contact with diverse materials. ACM TOG 2, 2 (2019), 1–24.

R. Hoetzlein. 2016. GVDB: raytracing sparse voxel database structures on the GPU. In
Proceedings of HPG. Eurographics Association, 109–117.

Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least
squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM TOG 37, 4 (2018), 150.

Y. Hu, T. Li, L. Anderson, J. Ragan-Kelley, and F. Durand. 2019a. Taichi: a language for
high-performance computation on spatially sparse data structures. ACM TOG 38, 6
(2019), 1–16.

Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and W.
Matusik. 2019b. ChainQueen: A real-time differentiable physical simulator for soft
robotics. In International Conference on Robotics and Automation (ICRA).

C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair
frictional contact. ACM TOG 36, 4 (2017), 152.

G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-
prager elastoplasticity for sand animation. ACM TOG 35, 4 (2016), 103.

S. Laine, T. Karras, and T. Aila. 2013. Megakernels considered harmful: Wavefront path
tracing on GPUs. In Proceedings of HPG. 137–143.

C. Li, M. Tang, R. Tong, M. Cai, J. Zhao, and M. Dinesh. 2020. P-Cloth: Interactive
Complex Cloth Simulation on Multi-GPU Systems using Dynamic Matrix Assembly
and Pipelined Implicit Integrators. Technical Report. Zhejiang University.

M. Li, M. Gao, T. Langlois, C. Jiang, and D. M. Kaufman. 2019. Decomposed optimization
time integrator for large-step elastodynamics. ACM TOG 38, 4 (2019), 1–10.

H. Liu, Y. Hu, B. Zhu, W. Matusik, and E. Sifakis. 2018. Narrow-band topology opti-
mization on a sparsely populated grid. In SIGGRAPH Asia 2018. ACM, 251.

H. Liu, N. Mitchell, M. Aanjaneya, and E. Sifakis. 2016. A scalable schur-complement
fluids solver for heterogeneous compute platforms. ACM TOG 35, 6 (2016), 201.

H. Liu, C. Zhang, Y. Zhu, C. Jiang, and S.-C. Zhu. 2019. Mirroring without overimitation:
Learning functionally equivalent manipulation actions. In AAAI Conference on
Artificial Intelligence (AAAI).

M. Macklin, M. Müller, N. Chentanez, and T. Kim. 2014. Unified particle physics for
real-time applications. ACM TOG 33, 4 (2014), 153.

O. Mashayekhi, C. Shah, H. Qu, A. Lim, and P. Levis. 2018. Automatically Distributing
Eulerian and Hybrid Fluid Simulations in the Cloud. ACM TOG 37, 2 (2018), 24.

Z. Montazeri, C. Xiao, C. Zheng, S. Zhao, et al. 2019. Mechanics-Aware Modeling of
Cloth Appearance. arXiv preprint arXiv:1904.11116 (2019).

K. Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
TOG 32, 3 (2013), 27.

K. Nagasawa, T. Suzuki, R. Seto, M. Okada, and Y. Yue. 2019. Mixing sauces: a viscosity
blending model for shear thinning fluids. ACM TOG 38, 4 (2019), 1–17.

Nvidia. 2019. NCCL Library. https://github.com/NVIDIA/nccl.
T. Pfaff, N. Thuerey, J. Cohen, S. Tariq, and M. Gross. 2010. Scalable fluid simulation

using anisotropic turbulence particles. In ACM TOG, Vol. 29. ACM, 174.
D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour.

2015. A material point method for viscoelastic fluids, foams and sponges. In ACM
SIGGRAPH / Eurographics Symposium on Computer Animation (SCA). ACM, 157–163.

E. Rustico, G. Bilotta, A. Herault, C. Del Negro, and G. Gallo. 2012. Advances in
multi-GPU smoothed particle hydrodynamics simulations. IEEE TPDS 25, 1 (2012),
43–52.

R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. 2014. SPGrid: A sparse paged grid
structure applied to adaptive smoke simulation. ACM TOG 33, 6 (2014), 205.

C. Shah, D. Hyde, H. Qu, and P. Levis. 2018. Distributing and load balancing sparse fluid
simulations. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 35–46.

S. Slattery, C. Junghans, D. L-G, G. Chen, A. Scheinberg, R. Bird, and C. Smith. 2019.
ECP-copa/Cabana 0.1.0. https://github.com/ECP-copa/Cabana. https://doi.org/10.
5281/zenodo.2558369

A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. 2012. Energetically consistent
invertible elasticity. In Proc Symp Comp Anim. 25–32.

A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point
method for snow simulation. ACM TOG 32, 4 (2013), 102.

A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented
MPM for phase-change and varied materials. ACM TOG 33, 4 (2014), 138.

D. Sulsky, Z. Chen, and H. L Schreyer. 1994. A particle method for history-dependent
materials. Computer methods in applied mechanics and engineering 118, 1-2 (1994),
179–196.

D. Sulsky, S. Zhou, and H. L Schreyer. 1995. Application of a particle-in-cell method to
solid mechanics. Computer physics communications 87, 1-2 (1995), 236–252.

A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017.
Multi-species simulation of porous sand and water mixtures. ACM TOG 36, 4 (2017),
105.

M. Tang, H. Wang, L. Tang, R. Tong, and M. Dinesh. 2016. CAMA: Contact-Aware
Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation.
Computer Graphics Forum 35, 2 (2016), 511–521.

TOP500.org. 2019. TOP500 List November 2019. https://www.top500.org/lists/2019/11/
O. Vantzos, S. Raz, and M. Ben-Chen. 2018. Real-time viscous thin films. ACM TOG 37,

6 (2018), 1–10.
K. Verma, K. Szewc, and R. Wille. 2017. Advanced load balancing for SPH simulations

on multi-GPU architectures. In High Performance Extreme Computing Conference
(HPEC). IEEE, 1–7.

I. Wald. 2010. Fast construction of SAH BVHs on the Intel many integrated core (MIC)
architecture. IEEE Transactions on Visualization and Computer Graph (TVCG) 18, 1
(2010), 47–57.

H. Wang. 2018. Rule-free sewing pattern adjustment with precision and efficiency.
ACM TOG 37, 4 (2018), 53.

S. Wang, M. Ding, T. F. Gast, L. Zhu, S. Gagniere, C. Jiang, and J. M Teran. 2019.
Simulation and Visualization of Ductile Fracture with the Material Point Method.
ACM TOG 2, 2 (2019), 1–20.

N. Weber and M. Goesele. 2014. Auto-Tuning Complex Array Layouts for GPUs.. In
EGPGV. 57–64.

R. Weller, N. Debowski, and G. Zachmann. 2017. kDet: Parallel constant time collision
detection for polygonal objects. In Computer Graphics Forum, Vol. 36. Wiley Online
Library, 131–141.

T. Willhalm and N. Popovici. 2008. Putting intel® threading building blocks to work.
In Proceedings of the international workshop on Multicore software engineering. ACM,
3–4.

R. Winchenbach, H. Hochstetter, and A. Kolb. 2016. Constrained neighbor lists for
SPH-based fluid simulations.. In ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (SCA). Eurographics Association, 49–56.

J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang. 2019. CD-MPM: continuum damage
material point methods for dynamic fracture animation. ACM TOG 38, 4 (2019),
1–15.

J. Wretborn, R. Armiento, and K. Museth. 2017. Animation of crack propagation by
means of an extended multi-body solver for the material point method. Computers
& Graphics 69 (2017), 131–139.

K. Wu, N. Truong, C. Yuksel, and R. Hoetzlein. 2018. Fast fluid simulations with sparse
volumes on the GPU. In Computer Graphics Forum, Vol. 37. Wiley Online Library,
157–167.

X. Xie, H. Liu, Z. Zhang, Y. Qiu, F. Gao, S. Qi, Y. Zhu, and S.-C. Zhu. 2019. Vrgym:
A virtual testbed for physical and interactive ai. In Proceedings of the ACM Turing
Celebration Conference-China.

Q. Xiong, B. Li, and J. Xu. 2013. GPU-accelerated adaptive particle splitting and merging
in SPH. Computer Physics Communications 184, 7 (2013), 1701–1707.

X. Yan, C. Li, X. Chen, and S. Hu. 2018. MPM simulation of interacting fluids and solids.
In Computer Graphics Forum, Vol. 37. Wiley Online Library, 183–193.

Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: A material
point method for shear-dependent flows. ACM TOG 34, 5 (2015), 160.

Y. Yue, B. Smith, P. Y. Chen, M. Chantharayukhonthorn, K. Kamrin, and E. Grinspun.
2018. Hybrid grains: Adaptive coupling of discrete and continuum simulations of
granular media. In SIGGRAPH Asia 2018. ACM, 283.

J. Zhao, Y. Chen, H. Zhang, H. Xia, Z. Wang, and Q. Peng. 2019. Physically based
modeling and animation of landslides with MPM. The Visual Computer 35, 9 (2019),
1223–1235.

Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM TOG 24, 3 (2005), 965–972.
Y. Zhu, C. Jiang, Y. Zhao, D. Terzopoulos, and S.-C. Zhu. 2016. Inferring forces and

learning human utilities from videos. In Conference on Computer Vision and Pattern
Recognition (CVPR).

Y. Zhu, Y. Zhao, and S.-C. Zhu. 2015. Understanding tools: Task-oriented object model-
ing, learning and recognition. In Conference on Computer Vision and Pattern Recog-
nition (CVPR).

ACM Trans. Graph., Vol. 39, No. 4, Article 30. Publication date: July 2020.

https://github.com/NVIDIA/nccl
https://github.com/ECP-copa/Cabana
https://doi.org/10.5281/zenodo.2558369
https://doi.org/10.5281/zenodo.2558369
https://www.top500.org/lists/2019/11/

	Abstract
	1 Introduction
	2 Related Work
	2.1 HPC-based Simulations in Computer Graphics
	2.2 The Material Point Method in Computer Graphics
	2.3 Data Structures and Simulations in HPC

	3 Improved Single-GPU Algorithm
	3.1 G2P2G
	3.2 AoSoA

	4 Multi-GPU Pipeline
	4.1 Multi-GPU Static Partitioning by Particles (MGSP)
	4.2 Multi-GPU Static Partitioning by Space (MGSS)

	5 Implementation
	6 Benchmarks and Performance Evaluations
	6.1 Single-GPU Performance
	6.2 Multi-GPU Scalability
	6.3 Partitioning Comparisons
	6.4 Large-scale Simulations

	7 Limitation and Future Work
	Acknowledgments
	References

